

Presenters

Development Plan: Carlo Basile

Summary: Wayne Luplow

Presenters

Video Format

• Video Compression

• Audio Compression

• Transport

• Transmission

• Development Plan

• Summary

Bob Keeler

: Woo Paik

Carl Eilers

: Terry Smith

: David Bryan

: Carlo Basile

: Wayne Luplow

-ORMAT

June 30, 1993

AGENDA

- Baseline formats
- Rationale for formats
- Open format issues
- Resolution of format issues
- Schedule for resolving format issues

Baseline Transmission Format Specifications

- Six formats supported for HDTV transmission
- Frame rates for live video as well as 24 Hz and 30 Hz for purposes such as film
- Both 720-line and 960-line formats supported
- Interlaced scan for 60 Hz 960-line format, with square pixels and lesser (horizontal) resolution non-square pixels
- Progressive scan transmission with square pixels for 720-line formats and 960-line film modes
- Migration to 60 Hz progressive scan with high line number as soon as feasible

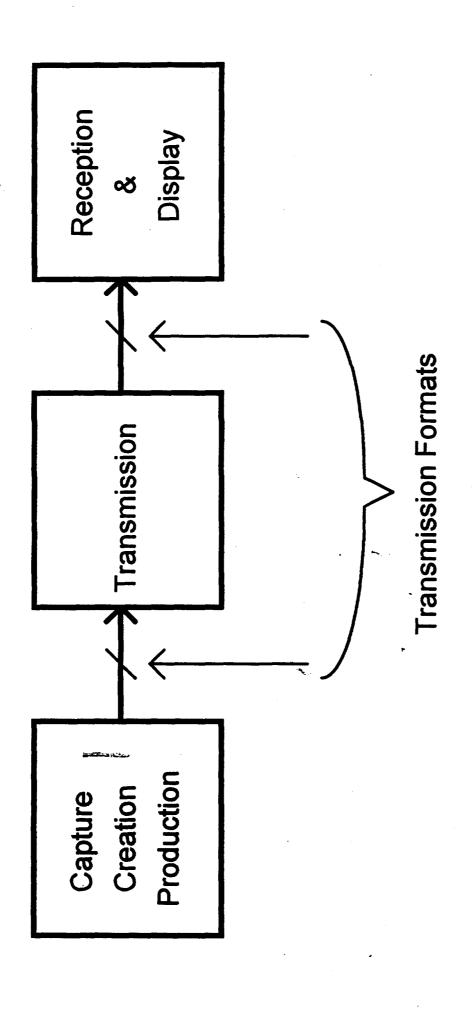
Format	Vertical	Horizontal	Frame/Field	Scan	Aspect	Square
	Size !	Size	Rate	Mode	Ratio	Pixels
Α	720	1280	60 Hz	Progressive	16:9	Yes
В	720	1280	30 Hz	Progressive	16:9	Yes
С	720	1280	24 Hz	Progressive	16:9	Yes
D	960	1728 or 1408	60 fields/sec	Interlaced	16:9	Not for 1408 pels/
Е	960	1728	30 Hz	Progressive	16:9	Yes
F	960	1728	24 Hz	Progressive	16:9	Yes

. J

•

Potential High Line Number Format

Extensibility


- 960-line progressive scan, 60 Hz (nominal) has appeal as natural extension of baseline formats
- Could be a logical choice for receiver implementation as native-mode display for high-end receivers, as manufacturer option

60 Hz Nominal Frame Rate

- 60.0 Hz or 59.94 Hz
- Alliance acknowledges importance of both 59.94 Hz and 60.0 Hz frame rates
- Currently under investigation
 - Closure July 31, 1993

Rationale

- Formats support excellent quality images for wide range of source material
- Formats accommodate progressive scanning and square pixels that will be important for multimedia and computer applications
- Formats are consistent with the 6 MHz bandwidth constraint of the television broadcast channel
- Formats allow early implementation of HDTV standard
- Formats address near-term needs of broadcast industry, as well as current and anticipated telecommunications, multimedia and computer industry needs

Alliance Formats Address Transmission Interface

Film Modes - 24 Hz and 30 Hz

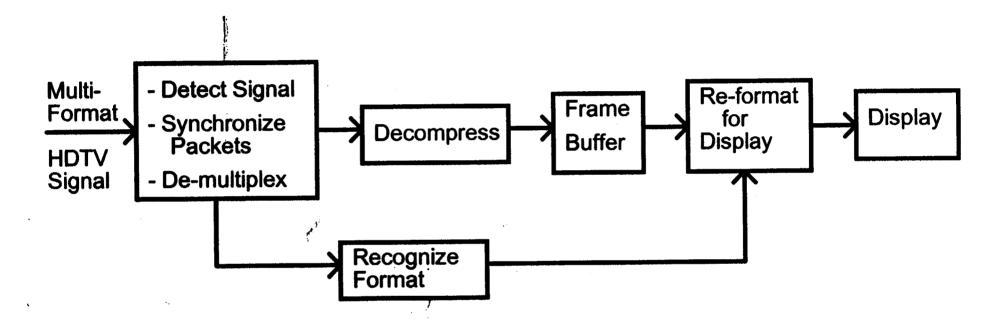
- Film capture s intrinsically representable in progressive scan formats, so film modes use progressive scan for transmission
- Film modes (24 Hz and 30 Hz) have pixel rates that are 40% and 50% respectively of the 60 Hz frame rate progressive scan image sequences
- Compression and <u>transmission</u> of film mode reduced-pel-rate formats leads to more efficient compression of film material, which will be an important source for HDTV
- Modes will be automatically identified within encoders and receivers
- Receivers re-format and display film modes at display frame rate, e.g. 60 Hz.

Interlaced Scan - 960-line

- Better resolution potential for still and low-motion images
- Intermediate step toward progressive high-line-number format
- Proven camera technology
- Proven receiver display technology
- Interlaced format has lower pixel rate

Progressive Scan 720-line Formats and 960-line Film Modes

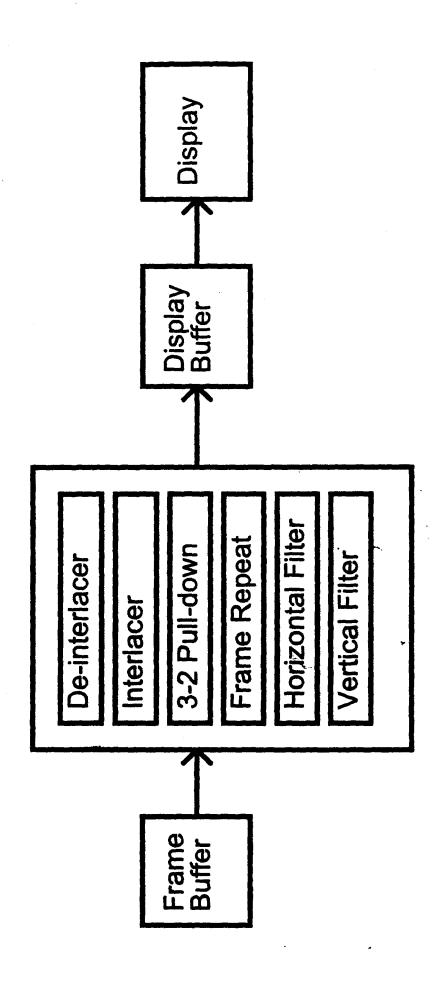
- Superb 60 Hz motion rendition for action sequences using 720-line format
- Free of interline flicker
- Square pixels for 60 Hz, 24 Hz, 30 Hz frame rates
- Both spatial and temporal standards conversions are simplified by using progressive scan
- Allows simple coding algorithms



Why Not 1080 Lines Instead of 960 Lines?

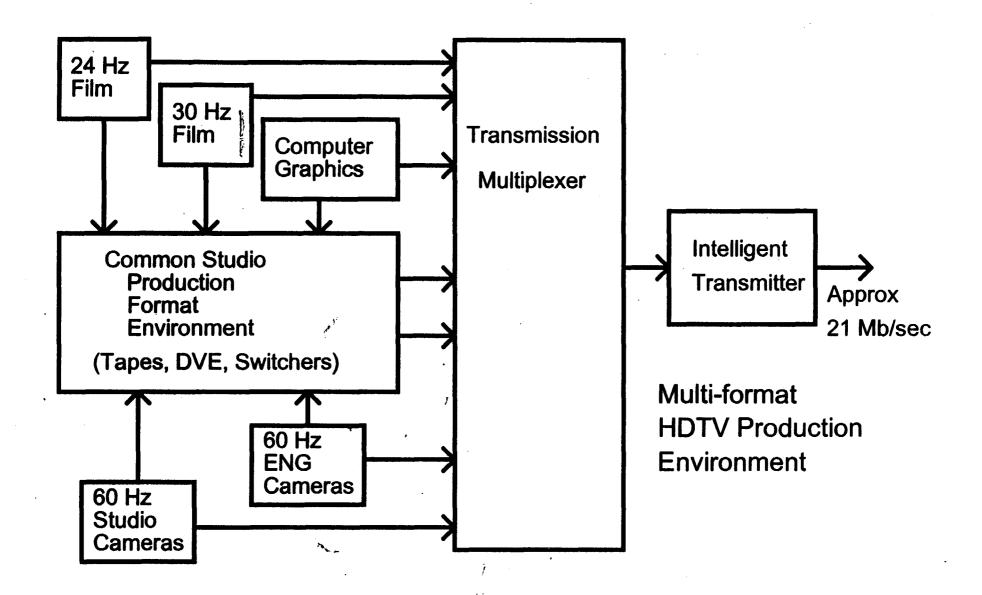
- Compression of 1080 by 1920 interlaced format is more demanding since pixel rates for 1080 by 1920 interlaced format range from 25% to 53% more than proposed 960-line interlaced formats
- 1080 by 1920 interlaced format requires more memory in receivers, than 960-line interlaced format
- Displays for 960 lines will be slightly less expensive than 1080-line displays
- Interoperability with NTSC is simplified

How Will Cost-effective Receiver Handle Six Formats?


- Receiver cost and complexity is basically driven by maximum memory size and speed which is a function of the most demanding format rate.
- Modular functionality in receivers
 - Detect, identify, recognize the format/mode
 - Decode and decompress image sequence
 - Deliver reconstructed images to receiver frame buffer
 - Re-format image in frame buffer for receiver's display
- Working assumption (receiver manufacturer implementation issue) is that entertainment receiver will have a single "native-mode" display format
 - Computer displays will be more likely to use multi-sync displays

Multi-format HDTV Receiver

Multi-format Processing Burden on Receivers


- Receivers routinely synchronize and de-multiplex high-speed data streams, decode variable-length codewords, invert DCT coefficients, move blocks of image with arbitrary vectors, and store images in frame memory
- Incremental processing to re-format the image for a local receiver display format is not significant
 - Temporal repetition or 3-2 pull-down is simple
 - Spatial filtering is easy
 - De-interlacing not needed for progressive scan film modes
 - Simple de-interlacing adequate for smaller, low-end receivers

HDTV Re-formatter for Display

Why Include Film Modes for 720-line Format?

- Progressive scan does not introduce interlace artifacts
- Lower film-mode pixel rate means broadcaster can trade off artifact-free coding for spare channel capacity
 - Deliver pictures with fewer artifacts because of low pixel rate, or
 - Use fewer bits for coding with acceptable artifacts, and use portion of channel capacity for ancillary purposes
- 720-line progressive scan has similar resolution to 960-line interlaced, depending on picture material

Format Self-identification via Packet Headers

- "Submerged complexity" made possible by digital, packetized representation and transport
 - Transmitter will send constant data rate, independent of format embedded in packetized transport
- Receivers will recognize self-identified format, and re-format as needed for native-mode display at nominal 60 Hz frame rate

Format Open Issues

- Migration path to higher line number with progressive scan
- 59.94 Hz vs 60.0 Hz frame rate
- Total pixel counts on lines, and total line counts, to allow for guard space around active picture area
- Coordination with ATSC on formats for production, contribution, distribution and transmission
- Relationship to 525-line formats

Schedule for Resolving Open Issues

- Preliminary recommendations for 59.94/60.0 Hz issue by July 31
- Preliminary recommendations for horizontal pixel count guard space by July 31
- Goal is to establish final format specifications by September 15, 1993